
AID-IT: Application Incident Diagnosis ‒

Immediate Triage & Testing
"Helping IT teams breathe life back into their systems - step by step."

A Comprehensive Framework for Complete Incident

Lifecycle Management

A Technical White Paper

Author: Tony Costa Bernard

Date: June 29, 2025

Version: 3.0

Executive Summary

The application support landscape has evolved significantly over the past decade, with

organizations increasingly relying on complex, interconnected systems to drive

business operations. Traditional troubleshooting approaches often lack the systematic

rigor needed to efficiently diagnose and resolve incidents in these environments, and

more critically, they frequently fail to provide adequate validation that systems are

truly operational after recovery attempts.

This white paper introduces AID-IT (Application Incident Diagnosis ‒ Immediate

Triage & Testing)—a comprehensive, multi-phase methodology that combines

systematic incident investigation, effective remediation, rigorous post-recovery

validation, thorough documentation, and continuous evaluation. AID-IT adapts proven

medical emergency response protocols for technology environments, creating a

memorable and effective framework that guides support professionals through the

complete incident lifecycle. The AID-IT methodology consists of five complementary

pillars, each with a distinct model, phase, purpose, and associated colors:

Model Phase Purpose Color

E.R.
Event/Emerge

ncy Response

Gather important players, define roles, and

establish initial incident response strategy.
Red

S.A.M.P.L.E.

Assessment

Collect structured intelligence about the incident.

What's happening? What’s the history? What

changed? Gather first indicators.

Orange

D.R. Treatment
Investigate (Diagnostic) and take immediate action

(Remediation) to restore function.
Amber

A.B.C.
Validation &

Stability

Confirm the system truly works—user-level,

back-end-level, and holistic-level.
blue

D.E.

Documentatio

n &

Examination

Capture formal system updates, incident-specific

insights, and team reflections in any format—be it

a debrief, retrospective, or lessons learned.

Establish a recurring system check: monitor KPIs,

validate user experience, and proactively engage

with business users to ensure sustained

performance.

Green

Significant MTTR improvements: The AID-IT framework provides superior

information gathering comprehensiveness compared to existing methodologies - The

medical analogy enhances memorability and adoption rates among support staff.

Implementation requires minimal training overhead while providing significant

operational benefits I believe organizations can reduce MTTR (Meant Time to

Resolution) by making improvements through structured processes. Some

organizations, LLumin mentions a concrete example, and they report significant MTTR

improvement through structured processes, “it can reduce unplanned downtime up to

40% within a year and MTTR by 20% within 24 months of going live.” [1].

Benefits of Post-Incident Reviews: Several sources, including [2] Atlassian, mention

that PIR give business the opportunity in “...turning them from frustrations to

opportunities. PIRs give you a chance to uncover vulnerabilities in your system, stop

repeat incidents, and decrease time to incident resolution in the future, and are an

important step in the lifecycle of an always-on service”. [3] Instatus, gives an example

from Amazon and AWS failure and how the PIR helped, mentioning that “A post-

incident review will keep your team from returning to business as usual following an

incident and require you address issues.” [4] WoodWing, highlight the benefits of

post-incident reviews (which align with the 'A.B.C. Validation' and 'D.E. Examination

Cycle' phases of AID-IT). “PIRs also lead companies to take on a proactive approach to

incident management. Instead of merely reacting to incidents, organizations can use

insights gained from post incident reviews to anticipate and address vulnerabilities –

before they lead to significant issues. This proactivity significantly enhances the

organization's ability to maintain operational continuity”. These benefits include:

• Reducing the detection time of initial incidents.

• Preventing recurrence of incidents.

• Improving the time to resolve incidents (MTTR).

• Facilitating organizational learning and knowledge sharing.

• Enhancing the ability to detect, respond to, and recover from future incidents.

This white paper presents a detailed analysis of the complete AID-IT framework,

compares it to existing methodologies, provides implementation guidance, and offers

case studies demonstrating its practical application in enterprise environments.

Table of Contents

Contents
A Comprehensive Framework for Complete Incident Lifecycle Management 1

Executive Summary... 1

Table of Contents .. 3

Introduction ... 5

2. Literature Review: Existing Support Methodologies ... 7

2.1 ITIL Incident Management Framework .. 7

2.2 DMAIC Problem-Solving Methodology ... 8

2.3 STFU Troubleshooting Method ... 8

2.4 Root Cause Analysis Methodologies .. 9

2.5 Agile and DevOps Incident Response .. 9

2.6 Gap Analysis ... 10

3. The AID-IT Framework: Complete Methodology .. 10

3.1 Framework Philosophy .. 10

3.2 Framework Structure ... 11

Pillar 1: E.R. (Event/Emergency Response) ... 11

Pillar 2: SAMPLE Investigation (Understand the issue) .. 12

Pillar 3: D.R. Remediation ... 13

Purpose of D.R. (Diagnostic & Remediation)... 13

Key Elements of D.R. .. 14

Best Practices for D.R. (Diagnostic & Remediation) ... 15

Pillar 4: A.B.C. Validation ... 15

Purpose of A.B.C. Validation ... 15

Key Elements of A.B.C. ... 16

Best Practices for A.B.C. Validation ... 17

Pillar 5: D.E Documentation and Review .. 17

Purpose of D.E. (Documentation, Case Notes, Review & Examination) ... 17

4.0 AID-IT White Paper Summary ... 20

Introduction

However, the challenge extends beyond simply resolving incidents quickly. A critical

gap exists in current support practices: the systematic validation that systems are truly

operational after recovery attempts. Industry studies consistently show that a

significant percentage of 'resolved' incidents recure due to incomplete resolution or

inadequate validation procedures, often due to incomplete restoration or failure to

validate all system components. [5] This phenomenon, known as "false positive

resolution," (https://blog.gitguardian.com/risks-prematurely-closing-incidents/)

represents a significant operational risk and customer impact multiplier. This article

discusses the risks associated with ignoring and incident and premature closure.

Why “AID-IT” is good

The selection of 'AID-IT' as an acronym is deliberate, intended to clearly articulate the

methodology's foundational principles and operational scope. Its primary benefit is

immediately apparent and highly memorable. The healthcare industry has long

recognized the importance of systematic approaches to emergency response. Medical

professionals use structured protocols like S.A.M.P.L.E. (Signs/Symptoms, Allergies,

Medications, Past medical history, Last meal, Events) for patient assessment and

A.B.C. (Airway, Breathing, Circulation) for life support validation. These methodologies

have proven their effectiveness through decades of application in high-stakes

environments where systematic approaches can mean the difference between life and

death. Having served as a First Aider for many years, a compelling question frequently

arose in my mind: Could the standardized, life-saving protocols employed in First Aid

not also be effectively applied within the realm of I.T. Support? Throughout my career

in the I.T. industry, I consistently observed that technicians, while highly skilled, often

relied on individual experience and personal approaches to assess and resolve

incidents. This often led to varied response times and inconsistent outcomes.

My conviction grew that a unified approach to incident management would benefit

everyone, fostering a shared understanding and consistent problem-solving framework

across teams. After all, if we can standardize processes to save human lives, surely,

we can apply similar rigor to safeguard critical application services. This line of

reasoning was the genesis of the AID-IT Methodology. The acronym 'AID-IT' was

deliberately chosen to be immediately informative, intuitively conveying its purpose

and ensuring its foundational benefit is readily apparent and highly memorable.

This white paper introduces AID-IT (Application Incident Diagnosis ‒ Immediate

Triage & Testing), a comprehensive framework that adapts medical emergency

response methodologies for technology incident management. AID-IT provides a

penta-phase approach that ensures thorough investigation, effective remediation, and

complete validation, addressing the full incident lifecycle from detection through

verified resolution.

https://blog.gitguardian.com/risks-prematurely-closing-incidents/

Why AID-IT is Good:

The development of AID-IT addresses several critical gaps in current application

support practices:

In an industry often plagued by cryptic acronyms and overly complex methodologies

that hinder adoption and effective application, AID-IT stands out for its clarity and

practical utility. AID-IT, which stands for Application Incident Diagnosis ‒ Immediate

Triage & Testing, is designed to be intuitively understandable and highly memorable.

Its medical-inspired framework provides a familiar and logical structure for incident

management, making it easy for support professionals to grasp and apply even under

pressure. By clearly defining each phase—from initial Event/Emergency Response (E.R.)

and systematic Assessment (S.A.M.P.L.E.), through targeted Diagnostic & Remediation

(D.R.) and rigorous Validation (A.B.C.), to continuous Documentation & Examination

(D.E.)—AID-IT ensures a comprehensive, end-to-end approach. This straightforward,

yet powerful, methodology enhances team coordination, reduces guesswork,

accelerates resolution times, and fosters a culture of continuous learning, ultimately

leading to a more resilient and efficient operational environment.

Chaotic and Uncoordinated Initial Incident Response: Without a structured approach,

the initial moments of an incident can be chaotic, with delays in identifying key

personnel, establishing communication, and assigning clear responsibilities. This

disorganization can significantly prolong incident resolution times and exacerbate

impact. The E.R. (Event/Emergency Response) phase directly tackles this by ensuring

immediate, coordinated mobilization of resources and clear role definition, transforming

initial chaos into a structured and efficient response that sets the stage for effective

investigation.

Inconsistent Investigation Approaches: Many support teams rely on informal,

experience-based troubleshooting that varies significantly between individuals and can

miss critical diagnostic information. The S.A.M.P.L.E. phase provides a standardized,

comprehensive approach to information gathering that ensures consistent quality

regardless of the support professional’s experience level, helping to understand the

issue.

Ineffective Remediation and Premature Incident Closure: The D.R. phase focuses on

the technical investigation (Diagnostic) and the actions taken to fix the issue

(Remediation), whether it’s a temporary workaround or a permanent solution, to treat

the cause.

Insufficient Post-Recovery Validation: The A.B.C. phase provides a systematic

approach to post-recovery verification that prevents false positive resolutions and

ensures that all system components are functioning correctly, helping to confirm the

system is healthy.

Knowledge Transfer Challenges: Traditional troubleshooting approaches often rely

heavily on tribal knowledge and individual expertise, making it difficult to transfer

knowledge between team members or maintain consistent quality during staff

transitions. AID-IT’s structured approach facilitates knowledge transfer and maintains

quality standards.

Lack of Holistic System Perspective: Many troubleshooting approaches focus on

individual components or symptoms without considering the broader system context.

AID-IT’s comprehensive framework ensures that both technical and business impacts

are considered throughout the incident lifecycle.

This white paper presents the complete AID-IT methodology, providing detailed analysis

of both investigation and validation phases, comparative analysis with existing

approaches, and practical implementation guidance for organizations seeking to improve

their application support capabilities.

1. Literature Review: Existing Support Methodologies

The application support industry has developed various methodologies and frameworks

over the past several decades, each addressing different aspects of incident

management and problem resolution. Understanding these existing approaches

provides important context for positioning the AID-IT methodology and highlighting its

unique contributions to the field.

1.1 ITIL Incident Management Framework

The Information Technology Infrastructure Library (ITIL) represents the most widely

adopted framework for IT service management, with its incident management process

serving as the foundation for many organizational support practices [6]. ITIL defines

incident management as "the practice of minimizing the negative impact of incidents

by restoring normal service operation as quickly as possible" and provides a

comprehensive process framework including incident identification, logging,

categorization, prioritization, initial diagnosis, escalation, investigation, resolution, and

closure.

While ITIL provides excellent process structure and governance, it focuses primarily on

workflow management rather than diagnostic methodology. The framework excels at

defining roles, responsibilities, and process flows but offers limited guidance on

systematic information gathering or validation procedures. ITIL's strength lies in

organizational alignment and process standardization, but it lacks the detailed

diagnostic framework that AID-IT provides through its S.A.M.P.L.E. investigation

phase.

While ITIL provides excellent foundation for managing IT services, helping to

standardize operations and ensure clear responsibilities. The framework excels at

defining roles, responsibilities and process flows. However, it is limited in its

instructions for how to delve into the specifics of how I.T. teams should diagnose

problems when service disruption occurs, or how they should confirm that a solution

has fully restored service. This is a critical gap that AID-IT addresses. Our

methodology, particularly its S.A.M.P.L.E. phase, gives every technician a consistent,

detailed approach to quickly understand an incident and ensure proper validation,

leading to faster and more reliable resolutions."

1.2 DMAIC Problem-Solving Methodology

The Define, Measure, Analyze, Improve, Control (DMAIC) methodology, originating

from Six Sigma quality management practices, provides a structured approach to

problem-solving that has been adapted for IT environments [7]. DMAIC emphasizes

data-driven analysis and systematic improvement, making it particularly valuable for

complex, systemic issues that require detailed statistical analysis.

However, DMAIC's comprehensive approach makes it unsuitable for routine incident

response where time-to-resolution is critical. The methodology’s emphasis on

extensive data collection and statistical analysis, while valuable for major problem

management initiatives, creates overhead that is impractical for typical support

scenarios. Additionally, DMAIC lacks the post-resolution validation focus that is central

to AID-IT's A.B.C. phase.

"In my extensive experience spanning over three decades within the IT sector, I have

rarely encountered direct application or widespread discussion of methodologies such

as DMAIC in the context of incident management. While established, their initial

challenge often lies in their mnemonic accessibility; unlike AID-IT, their acronyms may

not immediately resonate or intuitively convey their purpose.

However, the effectiveness of a methodology should not be solely predicated on the

memorability of its acronym. Instead, a truly impactful methodology must combine this

recall with practical usability, tangible benefits, and actionable steps. AID-IT is

specifically designed to achieve this synergy, being both memorable and inherently

practical, ensuring high benefits and ease of adoption in real-world scenarios."

1.3 STFU Troubleshooting Method

The STFU method (Scope, Timeline, Frequency, Urgency) represents a more informal

but practical approach to incident prioritization and initial assessment [8]. This

methodology focuses on quickly establishing the business impact and urgency of

incidents to guide resource allocation and escalation decisions.

While STFU provides valuable guidance for incident triage, it lacks the comprehensive

diagnostic framework needed for thorough investigation. The methodology’s strength

lies in rapid impact assessment, but it does not provide systematic guidance for root

cause analysis or post-resolution validation. STFU can be viewed as complementary to

AID-IT, providing initial triage capabilities that can inform the subsequent S.A.M.P.L.E.

investigation. Where AID-IT is the comprehensive Swiss Army knife of tools, STFU is a

specific tool for swiftly evaluating immediate impact and initiating preliminary

containment measures.

1.4 Root Cause Analysis Methodologies

Various root cause analysis (RCA) methodologies have been adapted for IT

environments, including the Five Whys technique, Fishbone (Ishikawa) diagrams, and

Fault Tree Analysis [9]. These approaches provide structured methods for investigating

the underlying causes of incidents and problems.

While RCA methodologies offer valuable analytical frameworks, they typically focus on

post-incident analysis rather than real-time troubleshooting. Most RCA approaches are

designed for major incidents or recurring problems rather than routine support

scenarios. Additionally, traditional RCA methodologies do not address the validation

phase that is critical for ensuring complete resolution.

The inherent strength of the AID-IT Methodology lies in its adaptability across various

incident priorities. Take for example critical P1 (Priority 1) vs P3 (Priority 3) incidents.

For P1 incidents, which demand the most rigorous and comprehensive response, you

would typically employ all five phases sequentially, like a Waterfall methodology:

following a sequential progression through all five phases: E.R. (Emergency

Response), S.A.M.P.L.E. (Assessment), D.R. (Treatment), A.B.C. (Validation &

Stability), and D.E. (Continuous Improvement). This ensures every aspect of the

incident is systematically addressed, from initial detection to post-mortem learning.

Conversely, for P3 incidents, AID-IT offers a more agile and tailored approach. Teams

may opt to bypass the E.R. phase, moving directly into S.A.M.P.L.E. for initial

assessment. Furthermore, the systematic nature of S.A.M.P.L.E. allows for early

identification of the issue (e.g., pinpointing the affected module at 'M'), enabling teams

to transition directly into Remediation (part of D.R.) without completing the entire

S.A.M.P.L.E. sequence.

The fundamental objective of AID-IT is to provide a clear, systematic framework that

minimizes cognitive load during high-stress situations. It empowers teams to navigate

incident response efficiently, reducing the need for ad-hoc decision-making and

ensuring a consistent, effective approach to problem-solving.

1.5 Agile and DevOps Incident Response

Modern software development practices have introduced new approaches to incident

response, emphasizing rapid response, collaborative problem-solving, and continuous

improvement [10]. These methodologies often incorporate practices such as blameless

post-mortems, chaos engineering, and automated monitoring and response.

While these approaches bring valuable cultural and technical innovations to incident

management, they often lack the systematic diagnostic framework that ensures

consistent quality across different team members and incident types. The emphasis on

speed and automation, while beneficial, can sometimes lead to incomplete

investigation or premature closure without adequate validation.

1.6 Gap Analysis

The literature review reveals several consistent gaps across existing methodologies:

Lack of Systematic Diagnostic Framework: Most existing approaches focus on

process management or high-level problem-solving techniques without providing

detailed guidance for systematic information gathering during incident investigation.

Insufficient Post-Resolution Validation: Current methodologies typically treat

incident closure as a binary decision without providing structured approaches to

validation that systems are fully operational.

Limited Memorability and Adoption: Many existing frameworks are complex or

abstract, making them difficult for support staff to remember and apply consistently

under pressure.

Incomplete Lifecycle Coverage: Most methodologies address either investigation or

resolution processes but do not provide comprehensive coverage of the complete

incident lifecycle from detection through validated closure.

The AID-IT methodology addresses these gaps by providing a memorable,

systematic approach that covers both thorough investigation and comprehensive

validation, ensuring complete incident lifecycle management.

2. The AID-IT Framework: Complete Methodology

AID-IT (Application Incident Diagnosis ‒ Immediate Triage & Testing) represents a

paradigm shift in application support methodology, providing a comprehensive

framework that addresses the complete incident lifecycle from initial detection through

verified resolution. The methodology draws its foundational principles from proven

medical emergency response protocols, adapting them specifically for technological

environments while maintaining the systematic rigor that makes medical protocols

effective in high-stakes situations.

2.1 Methodology Philosophy

The AID-IT methodology is built on several core philosophical principles that

distinguish it from existing approaches:

Medical Emergency Response Analogy: Just as medical professionals use systematic

protocols to save lives, technology support professionals need systematic approaches

to restore critical business systems. The medical analogy provides both memorability

and proven effectiveness, as these protocols have been refined through decades of

life-or-death applications.

Dual-Phase Lifecycle Management: AID-IT recognizes that effective incident

management requires both thorough investigation and comprehensive validation.

Many incidents recur because resolution efforts address symptoms rather than root

causes, or because validation procedures are inadequate to ensure complete system

restoration.

Systematic Information Gathering: The framework emphasizes structured

information collection that ensures consistency and completeness regardless of the

support professional's experience level. This systematic approach reduces the risk of

missing critical diagnostic information and facilitates knowledge transfer between

team members.

Holistic System Perspective: AID-IT considers both technical and business contexts

throughout the incident lifecycle, ensuring that resolution efforts address not only

technical functionality but also business process continuity and user experience.

2.2 Framework Structure

The AID-IT methodology consists of five sequential pillars, each serving a distinct

purpose in the incident lifecycle:

Pillar 1: E.R. (Event/Emergency Response)

This crucial initial phase focuses on the immediate actions required upon incident

detection to establish control and prepare for systematic investigation. It ensures that

the right people are engaged, and the environment is conducive to effective problem-

solving.

 Event/Emergency: Confirm the incident has occurred and assess its initial impact

and urgency. Is it a P1, P2, P3, or Critical incident? What are the immediate signs

of distress?

 Response: Mobilize the necessary resources and establish the incident command

structure. This includes:

 Gathering Key Players: Identifying and bringing together essential

personnel such as SMEs, incident managers, application support managers,

TechOps, DBAs and business stakeholders.

 Establishing Communication Channels: Setting up war rooms (physical or

virtual), communication bridges, and clear reporting lines.

 Defining Initial Streams: Assigning responsibilities for different aspects of

the incident response, such as who will gather initial symptoms, who will

check system configurations, and who will manage external communications.

This phase is about rapid mobilization and setting the stage for effective incident

management, ensuring that the subsequent S.A.M.P.L.E. investigation is well-

coordinated and efficient.

Pillar 2: SAMPLE Investigation (Understand the issue)

This phase focuses on comprehensive incident assessment and structured

information-gathering. The S.A.M.P.L.E. acronym guides the collection of critical data

points:

 Signs/Symptoms: What are the observable indicators of the incident? (signs) What

is the user experiencing? (Symptoms)

 Application Allergies: Referring to the system intakes, data, configs, user input,

feeds etc. Are there any known sensitivities or configurations that could

exacerbate the problem or affect potential solutions? (e.g., specific software

versions, hardware limitations, security policies).

 Modules impacted: What specific modules or parts of the systems are affected.

Is it the UI or the Data, or a web/application server, or other process which has

failed. Pinpoint the module affects, and this will give a huge insight as to what might be

the problem (e.g., patches, new features, configuration changes).

 Previous Incidents: Has this or a similar incident occurred before? What was the

resolution? Find that and we will have a quick win in restoring the system. (e.g.,

review recent incidents that might be a precursor to this one, check logs,

knowledge base articles).

 Last Change: Has anything changed recently with the system? This could be the

course! Also, what other systems have changed may have caused an indirect failure

with this application. (e.g., last successful transaction, last system reboot).

 Events: What sequence of events led to the incident? (e.g., user actions, system

alerts, external triggers).

By systematically gathering this information, support teams can quickly form a

comprehensive understanding of the incident, identify potential causes, and prioritize

their response efforts. This structured approach minimizes guesswork and ensures

that all relevant data is considered before proceeding to remediation.

"While the S.A.M.P.L.E. phase has been presented with a sequential, 'waterfall-like'

progression, it is crucial to emphasize the inherent flexibility of the AID-IT

Methodology. Teams are empowered to adapt their approach based on early insights.

For instance, if the root cause is identified swiftly, perhaps at the 'M' (Module) stage,

and the solution is clear, there is no requirement to complete every subsequent aspect

of the S.A.M.P.L.E. assessment. This adaptability ensures that the methodology

supports efficient resolution by allowing teams to pivot directly to remediation once

sufficient information is gathered."

Best Practices for S.A.M.P.L.E. Investigation

 Standardized Checklists: Develop and utilize standardized checklists for each

element of S.A.M.P.L.E. to ensure consistency and completeness in data collection.

 Automated Data Collection: Leverage monitoring tools, log management

systems, and configuration management databases (CMDBs) to automate the

collection of S.A.M.P.L.E. data wherever possible.

 Effective Communication: Train support staff to ask precise, open-ended

questions to gather detailed information from users and other stakeholders.

 Document Everything: Record all findings, observations, and hypotheses during

the S.A.M.P.L.E. phase. This documentation will be critical for subsequent

phases and for post-incident analysis.

 Prioritization: While comprehensive, the S.A.M.P.L.E. investigation should also be

efficient. Prioritize data collection based on the severity and urgency of the

incident.

By diligently applying the S.A.M.P.L.E. Investigation pillar, support teams can quickly

and accurately understand the nature of an incident, laying a strong foundation for

effective remediation and validation. This systematic approach reduces diagnostic

time, minimizes misdirection, and ultimately accelerates the path to resolution.

Pillar 3: D.R. Remediation

The D.R. (Diagnostic & Remediation) pillar is the core of active incident resolution

within the AID-IT framework. Once the S.A.M.P.L.E. investigation has provided a

comprehensive understanding of the issue, this phase focuses on the technical

investigation to pinpoint the root cause (Diagnostic) and the immediate actions taken

to restore functionality (Remediation). This pillar is about treating cause and restoring

service.

Purpose of D.R. (Diagnostic & Remediation)

 Pinpoint Root Cause: To conduct a focused technical investigation to identify

the underlying cause of the incident, moving beyond symptoms.

 Restore Service Quickly: To implement immediate actions, whether temporary

workarounds or permanent fixes, to restore the affected service or application to

operational status.

 Minimize Impact: To reduce the duration and severity of the incident by

efficiently applying solutions.

 Prevent Recurrence: To address the cause of the incident, thereby preventing its

immediate recurrence.

 Document Actions: To meticulously record all diagnostic steps and remediation

actions for future reference and learning.

Key Elements of D.R.

D - Diagnostic: This emphasizes the technical investigation and identification of the

problem. It implies the process of understanding what is wrong at a deeper technical

level, beyond the initial symptoms.

 Hypothesis Testing: Based on the S.A.M.P.L.E. data, formulate hypotheses about

the cause and systematically test them (e.g., checking logs, running diagnostics,

isolating components).

 Component Isolation: Narrow down the affected system components or services

to isolate the problem area.

 Tool Utilization: Employ specialized diagnostic tools (e.g., network sniffers,

performance monitors, debuggers, application logs) to gather detailed technical

data.

 Expert Consultation: Engage subject matter experts (SMEs) or vendor support if

the problem requires specialized knowledge.

 Root Cause Analysis (Initial): While a full RCA might occur later, an initial

understanding of the root cause is essential here to guide remediation.

R - Remediation: This focuses on the actions taken to fix the issue, whether it’s a

temporary workaround or a permanent solution. It’s about how you address the

problem.

 Workaround Implementation: Apply temporary measures to restore service

while a permanent fix is being developed or deployed (e.g., restarting a service,

rolling back a recent change, rerouting traffic).

 Permanent Fix Deployment: Implement the definitive solution to the identified

root cause (e.g., applying a patch, correcting a configuration, deploying new

code).

 Change Management: Follow established change management procedures for

any changes implemented, even during an incident, to ensure control and

traceability.

 Impact Assessment: Continuously assess the impact of remediation actions on

the system and users.

 Communication: Keep stakeholders informed about the progress of diagnostic

and remediation efforts.

Best Practices for D.R. (Diagnostic & Remediation)

 Prioritize Service Restoration: The primary goal of this phase is to restore

service as quickly as possible, even if it means implementing a temporary

workaround first.

 Structured Troubleshooting: Follow a logical, systematic approach to diagnosis,

eliminating possibilities methodically.

 Rollback Plan: Always have a clear rollback plan before implementing any

remediation action, especially for critical systems.

 Minimize Scope of Change: Implement the smallest possible change to resolve

the issue to reduce the risk of introducing new problems.

 Collaborate Effectively: Maintain open communication channels within the

incident response team and with other technical teams.

 Document Actions in Real-Time: Record every diagnostic step and remediation

action as it happens. This is crucial for the subsequent Documentation, Case

Notes & Review phase.

By effectively executing the D.R. pillar, support teams can efficiently identify and

resolve incidents, minimizing downtime and restoring critical services. This phase is

the operational heart of incident management, translating understanding into action.

Pillar 4: A.B.C. Validation

The A.B.C. (Application, Backend, Circulation) Validation pillar is a critical and often

overlooked phase in incident management, designed to confirm that the system is truly

healthy after remediation. It moves beyond simply verifying that the immediate

problem is gone, ensuring that all interconnected components are functioning correctly

and that the user experience is fully restored. This pillar is about confirming the

system truly works.

Purpose of A.B.C. Validation

 Prevent False Positive Resolutions: To avoid closing an incident prematurely

when underlying issues still exist or new problems have been introduced.

 Ensure Holistic System Health: To verify that all layers of the application—from

the user interface to the underlying infrastructure—are operating as expected.

 Restore User Experience: To confirm that end-users can successfully perform

their critical business functions.

 Reduce Recurrence: By thoroughly validating the fix, the likelihood of the same

or related incidents recurring is significantly reduced.

 Build Confidence: To instill confidence in the support team, users, and business

stakeholders that the system is stable and reliable.

Key Elements of A.B.C.

A - Application: This focuses on the user-facing functionality and the direct interaction

with the application.

 User Interface (UI) Functionality: Verify that all buttons, forms, navigation, and

interactive elements are working correctly.

 Key Business Transactions: Test critical workflows and business processes from

an end-user perspective (e.g., login, order placement, data submission, report

generation).

 Data Integrity: Confirm that data input, processing, and output are accurate and

consistent.

 User Acceptance Testing (UAT): Involve actual business users in the validation

process to ensure their specific needs are met.

 Performance (User Perspective): Assess the responsiveness and speed of the

application from the user’s point of view.

B - Backend: This delves into the underlying infrastructure, services, and integrations

that support the application.

 Database Connectivity and Performance: Verify database connections, query

performance, and data consistency.

 API and Service Integrations: Confirm that all internal and external APIs and

integrated services are communicating correctly and returning expected results.

 Server Health: Check CPU, memory, disk I/O, and network utilization on

application and database servers.

 Middleware and Application Servers: Verify the health and proper functioning

of application servers, message queues, and other middleware components.

 Log Analysis: Review backend logs for new errors, warnings, or unusual patterns

that might indicate hidden issues.

C - Circulation: This represents the holistic flow of data and processes throughout the

entire system, ensuring end-to-end connectivity and operational health.

 Network Connectivity: Verify network paths, firewall rules, and DNS resolution

between all relevant components.

 Security Controls: Confirm that security measures (e.g., authentication,

authorization, encryption) are functioning as intended and have not been

compromised.

 Monitoring and Alerting: Ensure that all monitoring systems are active and

correctly configured to detect future issues.

 Data Flow: Trace critical data paths through the system to ensure seamless and

accurate information exchange.

 System Dependencies: Verify the health and availability of all external and

internal systems that the application depends on.

Best Practices for A.B.C. Validation

 Automate Validation: Implement automated tests for key application

functionalities, backend services, and end-to-end data flows wherever possible.

 Checklist-Driven Approach: Use a comprehensive checklist for each element of

A.B.C. to ensure no critical component is overlooked.

 Beyond the Symptom: Don’t just test if the original symptom is gone; test the

entire affected workflow and related systems.

 Involve Stakeholders: Engage business users and other technical teams in the

validation process to get diverse perspectives.

 Document Validation Steps: Record the tests performed, the results, and the

confirmation of health system. This forms part of the incident record.

 Consider Load: If appropriate, perform validation under simulated load conditions

to ensure stability.

By rigorously applying the A.B.C. Validation pillar, organizations can ensure that

incidents are not just closed, but truly resolved, leading to more stablThe D.E.

(Documentation & Examination) pillar transforms the AID-IT framework from a reactive

incident response methodology into a proactive, continuous improvement cycle. This

combined phase ensures that lessons learned from incidents are captured and

disseminated (Documentation), and that the system is continuously monitored and

refined to prevent future issues (Examination). It ensures incidents don’t just end—

they teach, reinforce, and elevate standards over time.

Pillar 5: D.E Documentation and Review

Purpose of D.E. (Documentation, Case Notes, Review &

Examination)

 Knowledge Capture: To formally record all aspects of an incident, its resolution,

and lessons learned for future reference and training.

 Continuous Learning: To facilitate organizational learning from incidents,

turning reactive events into opportunities for process and system improvement.

 Proactive Prevention: To establish ongoing m### 7.2 Key Elements of D.E.

D - Documentation, Case Notes & Review: Capture formal system updates, incident-

specific insights, and team reflections in any format, a debrief, retrospective, or

lessons learned.

 Formal Documentation Updates: Update system configurations, knowledge

base articles, architecture diagrams, runbooks, and playbooks based on incident

learnings. This does not always need to be updated if system functionality has

not changed.

 Case Notes: Capture real-time, granular records of the incident as it unfolds,

including incident timeline, diagnostic steps, remediation actions, communication

logs, and decisions made. These notes would be updated with every incident.

 Review Findings: Document the outcomes of post-incident reviews (PIRs), team

retrospectives, and management debrief, focusing on root causes, lessons

learned, and actionable outcomes. The review part would take place in whatever

format the team or management deems the best, be it a debrief, retrospective

meeting, or lessons learned in a standup.

 Knowledge Sharing: Disseminate updated documentation and review findings to

relevant teams and stakeholders.

E - Examination Cycle: Establish a recurring system check: monitor KPIs, validate user

experience, and proactively engage with business users to ensure sustained

performance. This cycle can be over 1 day, 1 week, months, etc., until the next

incident. Support staff would keep an examination cycle of the application or system,

periodically checking its health, through KPI, visual monitoring, and expert experience

of the application (a hunch, for example, that the app is not performing as expected by

an SME is a vital first step in seeing that system is checking deeper, which could

prevent an incident). Not forgetting periodically checking with customers on their view

of system behavior or questionnaires. Each support and organization would determine

how often these examinations take place. Some systems require no more than ad-hoc

checks, while other systems need to be checked each week or after every patch. The

important thing is that the examinations are not left for indefinite periods or only when

incident occurs. Much like routine check-ups with a general practitioner are crucial for

human health, consistent and planned system examinations are fundamental to

maintaining operational health and proactively preventing major incidents.".

 Automated System Health Checks: Implement and maintain automated scripts

and tools for routine checks of system components, services, and integrations.

Performance Baselines and Trend Analysis: Establish performance baselines

and continuously monitor key metrics (e.g., response times, error rates, resource

utilization) to detect deviations and trends.

Security Audits and Vulnerability Scans: Conduct regular security audits,

penetration testing, and vulnerability scans to identify and remediate security

weaknesses.

Synthetic Transactions and User Journey Monitoring: Simulate user

interactions and monitor critical business processes to ensure end-to-end

functionality and responsiveness.

Log Analysis and Anomaly Detection: Utilize centralized logging and analytics

platforms to identify unusual patterns or anomalies that may indicate emerging

issues.

Regular Business User Check-ins: Beyond incident-specific feedback,

establish routine check-ins with business users to gather ongoing insights into

application usability and satisfaction.

KPI Review and Adjustment: Continuously review and adjust Key Performance

Indicators (KPIs) to ensure they accurately reflect desired outcomes and drive

appropriate behaviors.

Knowledge Base Validation: Periodically review and validate the knowledge

base (populated during the D phase) to ensure its accuracy and relevance.

Integrate Tools: Leverage incident management systems, knowledge bases,

monitoring platforms, and analytics tools to streamline documentation, data

collection, and analysis.

Standardize Templates: Use consistent templates for case notes, review reports,

and documentation updates to ensure completeness and ease of analysis.

Foster a Blameless Culture: Encourage open and honest discussion during

reviews, focusing on systemic improvements rather than individual fault.

Actionable Outcomes: Ensure that reviews result in concrete, assignable action

items with clear deadlines.

Automate Everything Possible: Maximize automation for monitoring, testing, and

data collection to ensure consistency and reduce manual effort in the

Examination part.

Define Clear Thresholds and Alerts: Establish clear thresholds for all monitored

metrics and configure alerts to notify relevant teams of deviations.

 Regular Cadence: Establish a regular schedule for reviews and examination

activities, adapting frequency based on incident volume, severity, and system

criticality.

 Accessibility: Make all documentation, case notes, and examination findings

easily accessible to relevant teams.

By effectively implementing the D.E. pillar, organizations transform incidents from

disruptive events into powerful learning opportunities, building a resilient, continuously

improving, and proactive support ecosystem. This ensures that the application

environment is not only restored after incidents but is continuously improved,

becoming more resilient, efficient, and aligned with business objectives over time.

4.0 AID-IT White Paper Summary

AID-IT (Application Incident Diagnosis - Immediate Triage & Testing) is a

revolutionary IT incident management methodology that applies proven emergency

medical protocols to IT support operations.

The Problem:

Traditional IT incident management suffers from rushed responses, symptom-based fixes,

inadequate validation, and poor knowledge capture, leading to recurring incidents and

extended downtime.

The Solution - 5 Pillars:

1. E.R. (Event/Emergency Response) - Immediate stabilization and containment

2. S.A.M.P.L.E. (Investigation) - Systematic information gathering using medical

triage principles

3. D.R. (Diagnostic & Remediation) - Root cause identification and targeted

treatment

4. A.B.C. Validation - Comprehensive system health verification (Application, Backend,

Circulation)

5. D.E. (Documentation & Examination) - Knowledge capture and proactive

monitoring

Key Benefits:

• 20% reduction in Mean Time to Resolution (MTTR)

• Dramatic decrease in incident recurrence rates

• Elimination of false positive resolutions

• Improved team confidence and reduced stress

• Flexible application - full methodology for P1 incidents, selective phases for P3

incidents

Why It Works:

• Medical-inspired approach that IT professionals intuitively understand

• Systematic framework that eliminates guesswork

• Adaptive flexibility that scales with incident severity

• Proven protocols adapted from life-saving emergency medicine

• Focus on root causes rather than symptom treatment

The Result:

Organizations transform from reactive "firefighting" to proactive system health

management, achieving faster resolutions, fewer recurring incidents, and building

institutional knowledge that prevents future problems.

AID-IT represents the evolution of IT incident management from chaotic emergency

response to systematic, medical-grade protocols that save time, reduce stress, and

improve outcomes.

References:

[1] LLumin. (Date). What is a Good Mean Time to Repair? Retrieved from

https://llumin.com/what-is-a-good-mean-time-to-repair-llu

[2] Atlassian. (n.d.). What are post-incident reviews? Retrieved from

https://support.atlassian.com/jira-service-management-cloud/docs/what-are-post-

incident-reviews/.

[3] Instatus. (n.d.). Why your Business Should Invest in a Post Incident Review Process.

Retrieved from https://instatus.com/blog/post-incident-review-process

[4] WoodWing. (2024, October 10). Incident prevention: the power of an effective post

incident review. Retrieved from https://www.woodwing.com/blog/the-power-of-

effective-post-incident-reviews.

[5] False positive, The Risks of Prematurely Closing Incidents

[6] ITIL standards and guidance, Powering Best Practice | ITIL®, PRINCE2® and MSP® |

Axelos and ITIL - ITIL and ITIL Framework Guide: Core Principles & Best Practices |

Atlassian.

https://llumin.com/what-is-a-good-mean-time-to-repair-llu
https://support.atlassian.com/jira-service-management-cloud/docs/what-are-post-incident-reviews/
https://support.atlassian.com/jira-service-management-cloud/docs/what-are-post-incident-reviews/
https://instatus.com/blog/post-incident-review-process
https://www.woodwing.com/blog/the-power-of-effective-post-incident-reviews
https://www.woodwing.com/blog/the-power-of-effective-post-incident-reviews
https://blog.gitguardian.com/risks-prematurely-closing-incidents/
https://www.axelos.com/resource-hub/practice/readers-manual-itil-4-practice-guide
https://www.axelos.com/resource-hub/practice/readers-manual-itil-4-practice-guide
https://www.itlibrary.org/
https://www.atlassian.com/itsm/itil
https://www.atlassian.com/itsm/itil

Journal of IT Operations, 15(2), 45-58. AXELOS. (2019). ITIL Foundation, ITIL 4

Edition. TSO (The Stationery Office).

[7] DMAIC phases, DMAIC Process: Define, Measure, Analyze, Improve, Control | ASQ

and DMAIC - The 5 Phases of Lean Six Sigma - GoLeanSixSigma.com (GLSS).

George, M. L., Rowlands, D., Price, M., & Maxey, J. (2005). The Lean Six Sigma

Pocket Toolbook: A Quick Reference Guide to 100 Tools for Improving Quality and Speed

[8] McGraw-Hill. [4] Johnson, R. (2022). Rapid Incident Triage: The STFU Method.

DevOps Quarterly, 8(4), 112-118. While a specific "STFU method" isn't found, many

well-documented frameworks use the principles of scope, timeline, frequency, and

urgency to prioritize tasks. These include: Eisenhower Matrix: This method categorizes

tasks based on urgency and importance, which directly relates to your "Urgency"

component.desklog.io

• ABCDE Method: This technique involves categorizing tasks into five levels of

priority (A-E), where "A" tasks are the most critical.desklog.io

• Scrum Prioritization: Used in agile development, this method sequences tasks

based on their priority and dependencies, which aligns with managing "Scope"

and "Timeline".desklog.io

• 1-3-9 Prioritization: This technique balances daily tasks by categorizing them

into one critical task, three important tasks, and nine nice-to-do tasks.desklog.io

[9] [5] Andersen, B., & Fagerhaug, T. (2000). Root Cause Analysis: Simplified Tools and

Techniques. ASQ Quality Press. 5 Whys 5 Whys: The Complete Guide with Steps,

Templates, and Tips | Creately and Fishbone Diagram, What is a Fishbone Diagram?

Ishikawa Cause & Effect Diagram | ASQ and Fault Tree Analysis, Fault Tree Analysis

(FTA) Guide: Process, Symbols & Examples.

[10] [6] Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Science of

Lean Software and DevOps: Building and Scaling High Performing Technology

Organizations*. IT Revolution Press.

Incident response best practice and tips, How to Document the Incident Management

Lifecycle ? – ITSM Docs - ITSM Documents & Templates and 10 Security Incident

Report Examples: A Complete Guide for Modern Documentation | Pull Checklist

https://asq.org/quality-resources/dmaic
https://goleansixsigma.com/dmaic-five-basic-phases-of-lean-six-sigma/
https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF_eFdKRk1HeEQdNR5GT8TDjwvon4kY6dc3cB3cieHwY4Wc6lqvJ8-bkJr-6caLNq5_9_BS1BsVGdL4sD94ojWbgrJLi0hdIoJ7iSUuOw3Z56C0ZcVV2fCXQrzdJanFMAnzC8n3TNufyYtArw==
https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF_eFdKRk1HeEQdNR5GT8TDjwvon4kY6dc3cB3cieHwY4Wc6lqvJ8-bkJr-6caLNq5_9_BS1BsVGdL4sD94ojWbgrJLi0hdIoJ7iSUuOw3Z56C0ZcVV2fCXQrzdJanFMAnzC8n3TNufyYtArw==
https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF_eFdKRk1HeEQdNR5GT8TDjwvon4kY6dc3cB3cieHwY4Wc6lqvJ8-bkJr-6caLNq5_9_BS1BsVGdL4sD94ojWbgrJLi0hdIoJ7iSUuOw3Z56C0ZcVV2fCXQrzdJanFMAnzC8n3TNufyYtArw==
https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF_eFdKRk1HeEQdNR5GT8TDjwvon4kY6dc3cB3cieHwY4Wc6lqvJ8-bkJr-6caLNq5_9_BS1BsVGdL4sD94ojWbgrJLi0hdIoJ7iSUuOw3Z56C0ZcVV2fCXQrzdJanFMAnzC8n3TNufyYtArw==
https://creately.com/guides/5-whys/
https://creately.com/guides/5-whys/
https://asq.org/quality-resources/fishbone
https://asq.org/quality-resources/fishbone
https://reliability.com/resources/articles/fault-tree-analysis-fta-guide/
https://reliability.com/resources/articles/fault-tree-analysis-fta-guide/
https://www.itsm-docs.com/en-gb/blogs/it-operations-playbook/how-to-document-the-incident-management-lifecycle
https://www.itsm-docs.com/en-gb/blogs/it-operations-playbook/how-to-document-the-incident-management-lifecycle
https://www.pullchecklist.com/posts/security-incident-report-examples-guide-modern-documentation
https://www.pullchecklist.com/posts/security-incident-report-examples-guide-modern-documentation

